原子力機構 （スポーク空洞，大電流電子源）

日本原子力研究開発機構羽島良一，沢村 勝，西森信行

光•量子融合連携研究開発プログラム
「小型加速器による小型高輝度X線源とイメージング基盤技術開発」
第13回全体会議
2015／10／6，早稲田大学

スポーク空洞開発の現状

金型計算

- 周波数を325MHzから650MHzに変更
- ABAQUSで厚さ方向を4分割した計算を実行中
O325MHz 3.5 mm （当初プラン）

O650MHz 2.0 mm 周波数を変え，
O650MHz $\quad 2.2 \mathrm{~mm}$
シート厚を変更

周波数とシート厚（表面）

 325 MHz シート匡 3.5 mm650 MHz シート厚 2.0 mm

\pm
650 MHz シート厚 2.2 mm

\pm

325 MHz シート厚 3.5 mm

650 MHz シート厚 2.2 mm

650 MHz シート厚 2.0 mm

650 MHz シート厚 2.4 mm

周波数とシート厚

- 周波数によるスケーリングで大きな差はなさそう
- シート厚の違いの差もあまり大きくなさそう
- 金型はスケーリングしたサイズで作成
- ニオブシートは厚めのもの（2．5mm）を使う
- テスト用のアルミ板 規格品 2.5 mm

マシニングセンタ加工範囲

- 650 MHzl にしたことによりダイ以外はKEKのマシニングセンタの加工範囲内に入る
- ダイは分解する必要がある

今後の工程予定

- 金型加工 11月～12月
- プレス試験 2月～3月

大電流電子源，進捗状況

50 mA 級大電流光陰極の開発状況と予定

27年度計画
1．マルチアルカリ光陰極を電子銃に組み込み電子ビーム生成試験を行う

高電圧コンディショニング電極有

高電圧コンディショニング電極有

130kV位からアクティビティ有り。
18時間くらいで順調に230kVに到達。
コンディショニング時はHVとloading容器間の バルブを開き，ターボでも引いた。
230kV印加時のコッククロフト電源の電流値は電極無とほぼ同じ。

保持試験のためインターロックシステム を構築中。

大電流電子源，今後の予定

まとめ
\checkmark 電極有で高電圧コンディショニングを行い，230kVIに到達した。

予定
＞200kVで長時間高電圧保持試験
$>\mathrm{Cs}_{3} \mathrm{Sb}$ カソードを用いたビーム生成試験

