A Study for Robustness of CsK₂Sb Cathode

M. KURIKI , G. Lei,A. Yokota,
M. Urano (Hiroshima U.)
Y. Seimiya, T. Konomi(KEK)
K. Negishi (Iwate U.)
M. Katoh (UVSOR)

Cathode Degradation Model (Two components model)

Cathode QE is degraded by two componentsRegarding to time (Gas adsorption, etc)Regarding to charge density (Ion back, etc)

- η: Quantum Efficiency
- t: elapsed time
- τ: temporal life
- p: Extracted charge density
- ζ: Charge density life

Temporal Life

- Temporal life was evaluated as a function of pressure.
- It was inversely proportional to P as expected.
- In a nominal environment, expected life is even long for accelerator operation.

Laser Wave length	405 nm	532 nm	
N. temp. life (h.Pa)	(8.3±0.06)e-5	(3.7±0.02)e-5	T
Temp. life at 1e-8 Pa (h)	8300	3700	
			$\langle \rangle$

Charge Density Life

$$\frac{d\eta(t)}{dt} = -\frac{J}{\zeta}\eta$$
$$\zeta \equiv \left[\sigma_d \int n_g \sigma_i(E) dz\right]^{-1}$$

 σ_d : Cathode degradation cross section. J : Beam intensity n_g :Residual gas density σ_i : Ionization cross section

Charge Density Life (cont.)

- The Bias dependence and the pressure dependence are consistent to the model.
- σ_d was in order of 1.0e-17 cm².
- Charge density life is 3.1e+6 C/mm² by assuming 150kV bias and 1.0e-8Pa. That corresponds to 10 year with 10mA from 1mm² spot.

UPS Analysis

- UPS Experiment was carried out at UVSOR, BL2B.
 - 750MeV SR facility at Okazaki, Japan.
 - UPS (hv=59eV) was performed.
 - Background analysis : Shirley method.

Cs5s/5p ratio

- The ratio of amplitudes of Cs5s/Cs5p was increased for lower QE.
- The similar phenomena was observed for Cs₃Sb by XPS (Betes).
- The low (high) ratio is interpreted as Cs in ionization (simple) state.
- The cathode shows an high QE, when Cs is in ionic compound state.

Sb5p peak

- Sb5p peak is the highest state. Electron in this state contribute to Photo-electron effect by laser light.
- As QE decreased, the cross section(amplitude) is decreased and the energy is increased.
- The peak is approaching to that of simple Sb.
- The high QE of CsK₂Sb is due to the larger cross section and less bound energy of the Sb5p state.

Configuration Interaction (CI)

- When there are several states with a similar energy, a new state is formed by mixing.
- This is one of the reason making a satellite peak.
- The CI peaks were disappeared for <0.005 QE.

Cs5s CI peak

Degradation process

- Cathode degradation process is observed by looking O2p peak area.
- Phase I : O2p peak area is constant.
 - O is adsorbed and diffused.
- Phase II: O2p peak was increased.
 - O + alkali (Cs and K):
 - Valence electron is provided by the alkali metal.
- Phase III: O2p peak was decreased.
 - O + Sb interaction.
 - O2p density is decreased by forming an orbital hybridization.

VSCによるカソード輸送試験

- 広島大学で作成したカ ソーを、VSC(Vacuum Suit Case)にて、KEKへ輸 送試験を行った。
- VSC(Vacuum Suit Case)
 - ・自動車用バッテリー2台
 でIP電源約2週間 駆動
 可能。
 - 到達圧力:1x10-8 Pa以下
 - 。 • 最大3個のカソードを保 管、輸送可能。

蒸着装置とVSC間の移動試験

- トランスファーロッドを迅速に移動した場合、
 、ゆっくりと移動した場合にはみられない、
 真空圧力の有意な上昇が見られる。
- 真空度を2e-7Pa以下に保持、 QE:5.5%→5.5%
- •真空度が1e-6Paまで悪化、 QE:5.5%→2.3%

*

 \mathcal{H}

カソードのVSC保管試験

- 2016年10月21日に5.5%QEのカソードを、蒸着 チャンバーからVSCへと移動し、そのまま保管した。
- 移動中の真空度は2.0e-7Pa以下。
- GVを閉じ、カソードをVSCに保存。
- 2016年11月11日に、カソードを蒸着装置に戻し、
 5.4%のQEを確認。
- VSCに保存してもQEの減少は非常に限定的。

VSC輸送(広島大→KEK)

2017年1月6日

・カソードをVSCへ輸送

2017年1月12日

- ・VSCをKEKに向けて発送。
- ・輸送は防振付きトラックを利用。 2017年1月16日
- ・KEK到着時、IP電源動作を確認。(約4日間)
- ・ c ERL電子銃系との接続作業までは、準備室2の 前の壁コンセントより電源供給で仮置き。

VSC接続部の準備

2017年2月6日

・VSC接続部の場所確保。

・アルミフレームでVSC接続部の架台を構築。 架台の中にブースの柱を抱え込むような状態で 設置。

2017年2月7日

- VSC本体を架台上に設置。
- ・ガイドフレームで接続位置を調整。

2017年2月14日

- ・接続部のベーキングを実施。(9~19時)
- ・ベーキング中のVSCの圧力上昇分は1e-7 Pa以下
- ・接続部の排気はTMPとNexTorr。
- ・到達圧力は約1x10-8 Pa。

、「<u>光陰極の2次元高解像度QE分布測定装置の開発</u>」を参照。

- 広大→KEKへ輸送中にVSCでリークが発生した可 能性
- 車の振動によりトランスファーロッドからアウト ガスあるいはリークの可能性
- ●人工的振動による擬似的な輸送試験
- ●輸送中にIPの電流値のモニター

Summary

- High performance cathode : 10%(532nm), 3650 hours、 3.1e+6 C/mm² at 1.0e-8 Pa.
- UPS experiment was carried out.
 - The crystal quality is essential for good performance.
 - Sb5p state contributes to photo-electron effect by laser.
 - Oxygen degrades the cathode.
 - Cathode in situ transport test \rightarrow failed. Vacuum leak trouble?

