超伝導高周波加速空洞高電界化の新技術の開発

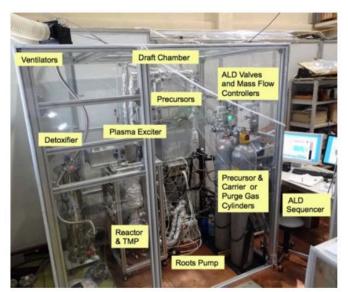
従来の加速空洞では加速勾配 40~50 MV/mが限界 これをさらに引き上げるための新技術の開発

11162016 H. Hayano, KEK

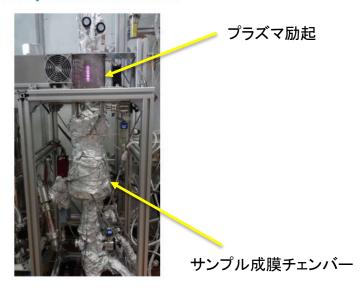
分担研究者; 早野、佐伯、加藤、久保、及川(D1): KEK

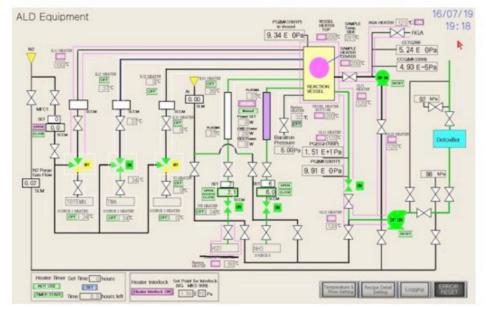
岩下:京大、他

開発研究の状況 (2016/11/16 現在)


(1)ALD成膜装置の開発

装置組み上げが完了。手動でNbN薄膜を生成試験。自動化改造が進行中。


- (2)薄膜評価装置の開発
 - (a) DC、AC臨界磁場計測装置 クライオスタットに小型冷凍機を組込んで、組立中。
 - (b) RF臨界磁場計測装置 測定空洞アルミモデルの性能を評価、改造を検討中。 プレス工法で製作するニオブ空洞実機は保留。
 - (c) 超伝導転移計測装置 (RRR計測) 計測装置は3Kまで到達できている。 各種薄膜サンプルを計測中。


ALD装置の現在状況(2016年08月)

First ALD System for SRF Cavity in KEK

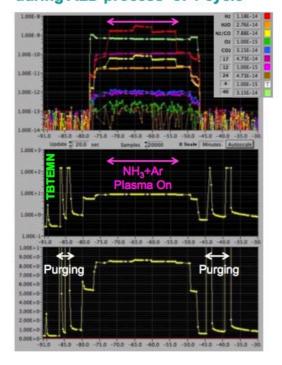
Plasma exciter with 13.56MHz RF power and reactor

制御モニター画面

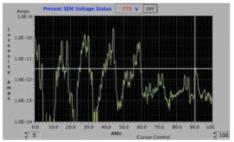
ALD conditions

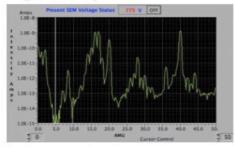
Plasma Power: 30 W

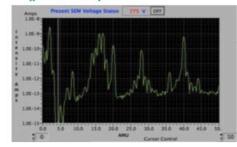
· Ar : 5 Pa, NH₃: 3 Pa in Absolute Pressure


TBTEMN Exposure: 3.4x10⁵L
NH3 Plasma Treatment: 20 min

· Si Substrate: 200°C


15 cycles


RGA ion intensities [A] (top) and reactor absolute pressure (Pa) during ALD process of 1 cycle


RGA specta of TBTEMN during adsorption

RGA specta of Ar+NH3 Mixsure (plasma off)

RGA specta of Ar+NH3 Mixsure (plasma on)

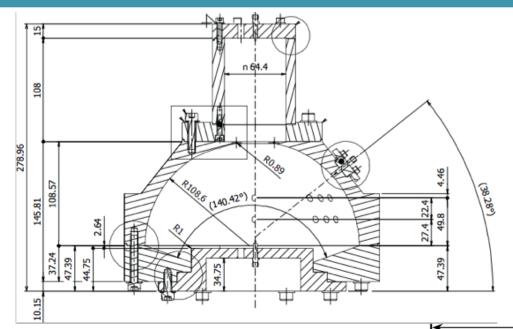
- NbN_x was formed with ALD process while much C and O are found in film.
- N/Nb ratio measured with XPS showed that the film was N poor. It would be due to preferential ion etching of nitrogen in film which has a line-of-sight to plasma source directly.
- Oxygen in film might be attributed to insufficient water degassing from reactor and tubes.
- RGA observation implies poor removal of hydrocarbon from adsorbed TBTEMN. This should be improved with increase of plasma power and optimized substrate temperature in order to remove carbon in film.

(2-a) AC下部臨界磁場(Bc1)を測定するクライオスタット

磁場印可用小型コイルによる AC下部臨界磁場測定セットアップ

磁場印加用 小型コイル

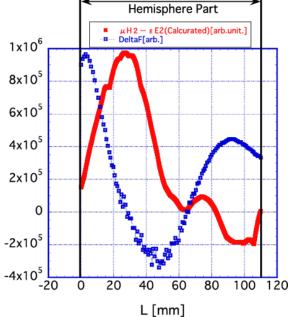
小型冷凍機を 組み入れた


> Ф750 mm Н 1800mm

サンプル

クライオスタット内部冷凍機

電磁場評価用 アルミ空洞の製作と評価

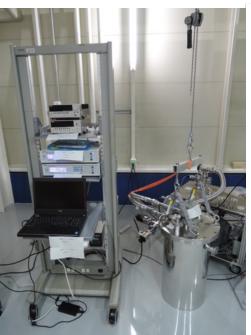


外形写真

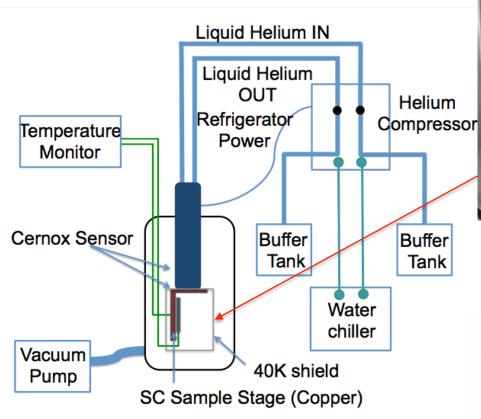
外直径 260mm 空洞内半球 半径 108.6mm 外部高さ 279mm

Electric Field Magnetic Field

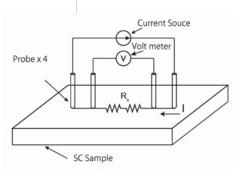
目的のモードの計測結果 共振周波数 計算 3.9193 GHz


実測 (3.916 GHz)

Q値 計算 43900

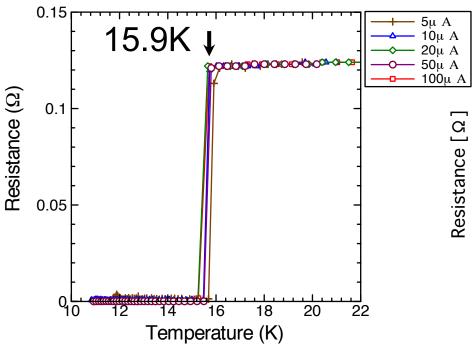

実測 (16200)

超伝導転移計測装置 (RRR計測)


小型冷凍機を使った計測装置

コンパクトな計測装置の全体写真

輻射シールドボックス内の 試料を固定し、冷却する 銅プレート

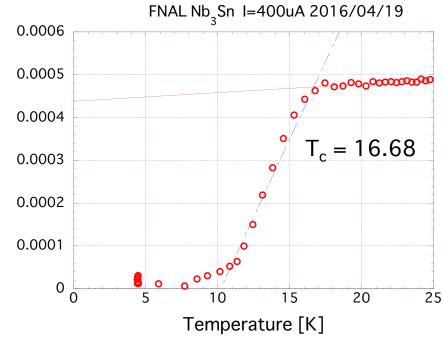

銅ベースプレートは3Kまで到達できる。 試料は伝導で冷却する。

4端子抵抗値計測法 により抵抗値を計測

(2-c) 転移温度測定とRRR測定 (NbN薄膜、Nb3Sn薄膜)

NbN シリコン基板上200nm薄膜試料

Saclay 製, スパッタで Si ウェハに製膜。 Si - SiO2 - Nb - Al₂O₃ - NbN の構造。試料形状5 mm × 20 mm × 200nm


熱アンカーを施し、薄膜に接触させているセルノックスによるNbN薄膜試料温度

参考用 Tc(NbN) = 16.2K

400uA meas. Current on With refrigerator off From 4K

y = 0.00043833 + 2.0056e-6x R= 0.85681

--- y = -0.00074299 + 7.2822e-5x R= 0.98535

sample

Small size Cernox

We confirmed Tc is close to the one Nb₃Sn, but some mixture of Nb, maybe.

Cu base plate

終わり