Development of X-ray phase imaging method using a compact high-brightness X-ray generator 11th Plenary Meeting (2015.05.14, Tohoku University)

Development of X-ray phase imaging method using a compact high-brightness X-ray generator Sub-theme: Evaluation of the Gratings for a Talbot-Lau Interferometer

Tohoku University, IMRAM Margie P. Olbinado, Atsushi Momose

Purpose of this work

To determine the **optimum X-ray energy** for the grating interferometer by measuring the X-ray energy at which there is **maximum fringe visibility**

To be able to give a recommendation for the X-ray source energy setting for X-ray phase imaging using this grating interferometer

Background

The optimum energy is for which the phase grating gives $\frac{\pi}{2}$ X-ray phase shift:

$$\phi(E) = \frac{2\pi}{\lambda} \delta(E) h_1$$

optimum energy

I Grating parameters for a Talbot-Lau interferometer E = 30 keV was designed and acquired

Grating Type	Source Grating, G0	Phase Grating, G1 $\pi/2$ phase shift at 30 keV	Analyzer Grating, G2			
Material	Au	Ni	Au			
Period (µm)	6.82	3.57	7.49			
Structure Height (μm)	Design: 70 Measured: >70 +-10%	Design: 5.23 Measured: 5.34 +- 0.35	Design: 100 Measured: 103			

The maximum moiré fringe visibility was observed at 26 keV. An incorrect grating height was suspected and a replacement grating was requested from Microworks (Germany).

Replacement Phase Grating

Specifications:

Grating period	3,57 µm
Grating height specified	Nickel height 5.23µm
Mask for exposure	1266_00_A0 Los Nr. 05285
Substrate type	200 µm Si, CrAu seed layer

Actual parameters of the grating:	
Grating qualtiy	Good
Ni height	5,18 +- 0.27 µm
Grating DC	0,51+/- 0,03

SEM Image

2 aubit	21 oStrip	ADD4.14		1. A C. T.	BIC - 7	or ky D	du :17 Pi	17513	Singe at	2-210		Zum	and the second
		100 M		an and the second			N. S. S. S.		State State	lental ottor biographication	10.200		Contraction of the local division of the loc
	E AND FAIL		and and	0.000			ALC: NOT		and the second second	anta anta Secondaria	ALC: NO.		
			a state a	1000	And Andrews	and a state of the	at the second second		Bin mar	area and a	NAME AND	Statistics.	
			and	1.015	X I TANK	100 M	and the second		STATES IN	are not	Statute and	and a second	
	and the second		and a second	CONTRACT OF	and a second	to the second	OT LOCAL DA		STATES IN		1000	All and a second	
			6 6				1		100				

Overview of this report

- 1. Measurement of the Moiré fringe visibility using the replacement phase grating for a design energy 30 keV and comparison with the old phase grating.
- 2. Measurement of the Moiré fringe visibility using the replacement grating when the design energy was changed to 25 keV
 - Comparison with simulation
- 3. Conclusions and Recommendation

Experiment Parameters

X-ray Source	Hamamatsu Photonics Micro-focus Source (Large focus mode) Source size: 300 μm Tube Voltage: 50 kV Tube Current: 300 μA
X-ray Detector	Energy-resolving Detector: AMPTEK CdTe diode Pinhole: 1mm, Pinhole thickness: 1mm W Area Detector: 40 μm GOS scintillator connected to CCD Camera via fiber coupling (Spectral Instruments)

X-ray Talbot-Lau Interferometer Set-up

Moiré fringe visibility via fringe scanning. G2 was moved across one period d2 in steps of d2/5 Detector was located at the center of G2.

Results: Moiré Fringe Visibility 1. A Comparison between old and replacement grating

5 step fringe scan: 1 minute/ step

Gray scale: [0, 0.5]

The energy-resolved visibility measurement shows that the maximum visibility is at 26 keV for both phase gratings.

Results: Moiré fringe Visibility

2. When the design energy was changed to 25keV

— exp_30keV

-----sim(h1:25keV)_30keV

The position of the maximum visibility were: 26 keV for design energy 30 keV 24 keV for design energy 25 keV

This shift is confirmed by simulation.
(G1 was assumed to have a π/2 shift for 25 keV.)
27 keV for design energy 30 keV
25 keV for design energy 25 keV

The measured visibility at higher energies was lower due to the bridge structures in G2.

The Talbot- Lau interferometer is recommended for operation at an optimum energy of 25 keV.

Conclusion and Recommendation

The position of the maximum visibility for the replacement grating was similar to that of the old phase grating.

The Talbot- Lau interferometer using this phase grating is recommended for operation at a design energy of 25 keV.