Beam Loading Simulation of Injector Cavities

1

Request of beam loading estimation

Y.Honda (2014.4.18)

- Purpose
 - Beam operation mode consideration for Laser Compton Light Source commissioning.
 - We will test the beam mode in coming May-June operation.
- Proposed pulse pattern (peak current, pulse train duration, repetition)
 - 1mA, 1ms, 5Hz (average $5\mu A$)
 - 0.1mA, 10ms, 5Hz (average 5μA)
 - 0.005mA, CW (average 5 μ A)
 - 1mA, 1μs, 1000Hz (average 1μA)
 - other ideas...?
- Beam loading at injector cavities should be checked.
 - Energy extracted by a train of beam is comparable with the stored energy in a SC cavity.
 - Field in the SC cavity will be controlled to be constant by the RF system, but with limited time constant.
 - Energy variation in a pulse train should be estimated.

LLRF system @ Beam Commission

Test Bench

> FBGA based Cavity simulator is used as the emulator for the Inj. 1 cavities

Feedback Effects (1 ms, 1 mA)

Feedback Effects (10 ms, 0.1 mA)

FF compensate(1 ms, 1 mA)

Feed Forward Compensation can be also effects if the beam profile is square-like wave (The current LLRF system can only realized the square wave FeedForward).

Question?

Thank you very much for your attending

FF compensate(1 us, 1 mA)

FF +FB (1 ms, 1 mA)

11