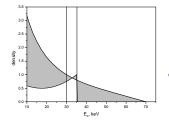
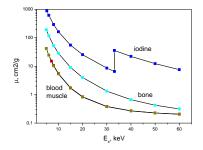
Compton X-ray Imaging Advantages


E.Bulyak, J.Urakawa

NSC KIPT, KEK

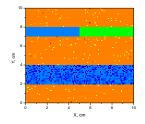
Mini-Workshop on Advanced Accelerator and Laser Technologies for New Generation Light Sources KEK, January 31, 2014


- Compton radiation vs bremsstrahlung
- Differential imaging
- Phase—contrast imaging
- Scan of extended objects
- Outlook

Compton Radiation vs Bremsstrahlung

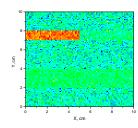
Compton spectrum vs. bremsstrahlung

- Bremsstrahlung radiation
 - Spectral density decreases with energy
 - Maximal energy ≈ kinetic energy of electrons
 - Wide cone of radiation
 - Relatively low energy of electrons (compact source)
- Compton x-radiation
 - Spectral density increases with energy
 - Pencil–like cone of radiation,
 - $\Delta\psi\sim$ 10 mrad
 - Energy of electrons necessary 50...100 MeV
 - Steep high–energy cutoff: slope width $\sim \Delta E_e/E_e$
 - Maximal energy $\propto \gamma^2$ tunable


Attenuation coefficients from [NIST]

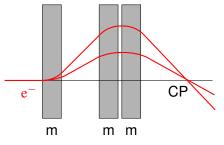
- Blood attenuation = muscle one
- Radio-contrast agent (e.g. iodine) added
- Peripheral angiography: subtraction technique – digital subtraction angiography (DSA). 2–3 frames per second
- Pulsing object (heart) demands multiple – 15–30 frames/sec (x–movie)

Procedure


- Obtain the image at $E_x^{\max} < E_k$
- Obtain the image at $E_x^{\max} > E_k$
- Produce sum of the images (to enhance statistics)
- Produce difference of the images to reveal localization
- Expected
 - Contrast agent may be injected before
 - Subtraction possible for pulsing object (heart)
 - Shorter time of picturing
 - Small number of frames sufficient

Compton K-Edge Angiography [E.Bulyak, J.Urakawa, RREPS 2013, arXiv:1312.6785 (2013)]

dif



Simulation parameters

- Tissue density (g cm⁻²)
 - muscle 5,
 - bone 0.5,
 - blood 0.5,
 - iodine 0.0125
- Compton radiation
 - Ideal spectrum,
 - Range (21–30) keV and (23–35) keV
- Statistics
 - # photons 2×10^7 per spectrum
 - Mesh 100 \times 100 pixels
 - Random position, uniform distribution

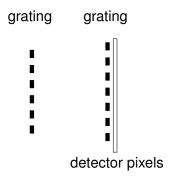
- $2 \times 2 \times 10^7 \times 30 \, \text{keV} = 2 \times 10^{-7} \, \text{J}$
- From 80% to 90% x-ray quanta absorbed
- Suggest the irradiated area 10 \times 10 = 100 cm², mass \approx 0.5 kg
- Absorbed dose \approx 0.4 μ Gy
- Dose area product (DAP)40 μGy cm² (c.f. 20 to 100 Gy cm² for adult Coronary angiography)

Sweeping of e-Orbit Inclination 1D x-ray beam + 1D object sweep, possible 2D x-ray beam sweep

flat dipole rectangular magnets

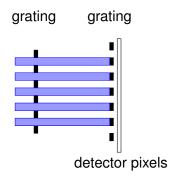
3-Magnet sweeper

 CP position remains const, independent on electron energy

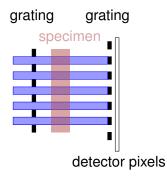

• weak dependence of $E_{\rm max}$ on collision angle, $\Delta E_x/E_x = \Delta \phi \sin \phi/2 \approx \phi \Delta \phi/2$

Example

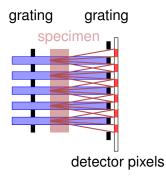
Sweep of crossing angle by 2° = 0.035 rad may be sufficient: $\textit{LB}=6\times10^{-5}\gamma$ Tesla m


- Objects (specimen):
 - thin
 - composition varies slightly
- Compton beams small phase volume:
 - small opening angle (almost parallel)
 - narrow spectral width
 - small emitting area (tens of micrometers)

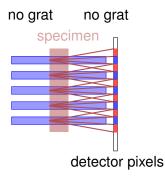
Dark-Field Imaging Principle



- Gratings adjusted to block the light
- Diffracted rays passed through second grating produce image
- Second grating not necessary if the screen is a pixel sensor (interleave of diffracted – absorbed images)
- First grating not necessary if source emits comb–like profile rays


Dark-Field Imaging Principle

- Gratings adjusted to block the light
- Diffracted rays passed through second grating produce image
- Second grating not necessary if the screen is a pixel sensor (interleave of diffracted – absorbed images)
- First grating not necessary if source emits comb–like profile rays



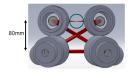
- Gratings adjusted to block the light
- Diffracted rays passed through second grating produce image
- Second grating not necessary if the screen is a pixel sensor (interleave of diffracted – absorbed images)
- First grating not necessary if source emits comb–like profile rays

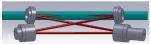
- Gratings adjusted to block the light
- Diffracted rays passed through second grating produce image
- Second grating not necessary if the screen is a pixel sensor (interleave of diffracted – absorbed images)
- First grating not necessary if source emits comb–like profile rays

Dark-Field Imaging Principle

- Gratings adjusted to block the light
- Diffracted rays passed through second grating produce image
- Second grating not necessary if the screen is a pixel sensor (interleave of diffracted – absorbed images)
- First grating not necessary if source emits comb–like profile rays

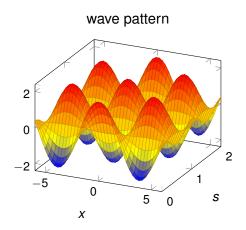
- ・162.5MHzの平面4枚鏡共振器2台を1つの真空チェンバーに収める。
- ・曲率半径420mmのconcave mirrorを使う。直径は1インチ。
- ・レーザーの光軸の半径を5ヶサイズで描いている。
- ・ビームダクトは内径35mm、厚さ2mmを改定している。
- この図で衝突角17度。

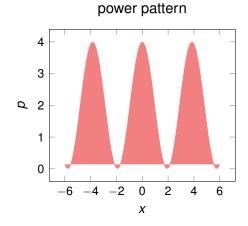

nlane


・plane mirrorにはpiezoを取り付ける。

This is not aggressive. I think when we use small electron beam pipe we makes smaller crossing angle, say 10 degrees. Also, we can reduce 80mm to about 60mm with special design. $\approx -\pi_{\rm el} M = -44 \ {\rm Tr} M = 44 \ {\rm Tr} M = 46 \ {\rm T$

外径Φ80mmで描いている。





Crossed Resonator [J.Urakawa] – a way to comb–like profile

- Double power
- Interference possible, spacing $\lambda/(2\sin\phi)$
- Enables comb–like shape

Advantages of Employing Compton Source

- Conventional transmission imaging
 - Much less radiation load
 - Much faster
 - Enable subtracted images of heart
- Phase–contrast imaging
 - Point-like emitter:

edge enhanced contrast imaging [Sakaue *et al* AIP Conf. Proc. 1466, 272 (2012)]

- 'Striped' emitter: the dark-field (or scattering) imaging
- Other phase-sensitive techniques